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ABSTRACT

r-

A very important recent technological development in sensor
technology is the ability to construct multispectral imaging
sensors with very large numbers (_ 200) of spectral bands. A
significant number of such hyperspectral sensor systems are
now in use or under various stages of development in various
countries. The existence of such sensors raises the question of
how best to analyze the data with so many spectral bands.
Though existing conventional multispectral analysis methods
will still be useful in the hyperspeetral era ahead, it becomes
clear that they fall short of the ideal in several senses. For
example, conventional methods often prove computationally
unreasonable for large numbers of bands, they may not enable
the extraction of all the information from the data that might
otherwise be possible, and they may prove excessively
cumbersome for researchers in their work.

In thi s paper, after a brief introduction, some of the basic
characteristics fundamental to the analysis process are outlined.
This is followed by an example showing how they may be
applied to hyperspectral data analysis.

INTRODUCTION

Over the last three decades the field of land oriented opdcat

remote sensor technology has seen the flight in space of at least
two generations of multispectral imaging devices. Landsat 1
ushered in the modem era of multispeetral sensing with the
MSS, a four band sensor with its 80 meter pixels and a signal-

to-noise ratio supporting a 6-bit gray scale. Landsat 4 and 5
carry Thematic Mapper, a second generation sensor with its
seven bands of 30 meter pixels more broadly distributed over the
optical region and a signal-to-noise ratio supporting 8-bit data.
With some modest enhancements, Landsat 6 and 7 will carry

similar capabilities.

Advances in the solid state devices field since the mid-seventies

when Thematic Mapper was designed, have made possible
significandy more advanced sensors. A considerable number of
multispectral devices with as many as 200 spectral bands are
now flying in aircraft or under various stages of design or
construction in a number of countries. Because of the large
number of bands, these devices are now referred to as

hyperspectral sensors, and in spite of the much narrower

spectral windows being used, they can provide signal-to-noise
ratios supporting 10-12 bit data systems with spatial resolutions
of a few 10's of meters IFOV from orbit.

Such a large jump in data complexity requires a renewed focus
on data analysis technology, for though existing approaches can
still be used with such data, if the full information delivery

potential of such sensors is to be realized, it is reasonable to
speculate that paralleling advances in analysis methods are
needed. Thus we turn to a re-look at the fundamentals of

multivariant data analysis.
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DATA ANALYSIS PRINCIPLES

As a result of fundamental engineering research over the years,
much has been learned about the process of analysis of complex
data. Results drawn from the fields of the communication

sciences, pattern analysis, and signal processing are particularly
relevant to the remote sensing problem. It is possible to put forth
some basic principles useful as a point of departure in
addressing the unprecedented complexity of the new data.

Data Representation. Perhaps foremost of these principles is

that the analysis perspective must begin with a rigorously
defined but broadly applicable means for mathematically
representing the data. The mathematical means for representing
the data must be such that it does not ignore any aspect of the
data that might be information-bearing. A number of different
data representations have been in common use in the field,
depending upon the application problem and the background of
the analyst. Straightforward schemes that view multispectral data
strictly in terms of spectra, i.e., a graph of response values
verses the band number, have been foutid to be very practical for
many problems.

However, it is becoming increasingly apparent that there is
significant useful information contained not only in the spectral
variations themselves, but how the signals co-vary from band to
band, and such information can easily be overlooked in viewing

data as simple deterministic spectral responses. For example, the
second order variations of spectral responses have been shown
to be of increasing importance as the dimensionality of the data
increases [1,2]. Thus, to preserve the ability to express these
variations, the use of a mapping from "spectral space" to a finite

dimensional "feature space" is suggested. Such a representation
has found some use in past years [3,41 but it will become even

more important with the arrival of the more complex data
provided by hyperspeetral sensors. The concept is simple, as
illustrated in Figure 1, but quite general, effectively mapping a
continuous function into a discrete finite dimensional space in a

bilateral, lossiess fashion.
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FTgure I. Three example spectral responses mapped to a
mullivadant feature space. Though sampling at only two
wavelengths is shown here, sampling at any number of
wavelengths could be used, resulting in a
correspondingly higher dimensional multivariant space.

Next we note that though it is perhaps convenient to think of a
given material as having a single spectral response, as implied
by the spectral curves of Figure 1, in reality, pixels are mixtures

Geoscience and Remote Sensing Symposium (IGARSS'93),



r

of a number of constituents under slightly different illumination
and observation circumstances. Thus, when observed at a high
level of precision and detail, a given material provides not a
single spectral response but one of a family of responses. It is
this family that is diagnostic of the material, rather than any one
of its members alone.

Characteristics of Analysis Algorithms. Next one must
consider what are the significant characteristics of analysis
algorithms. Here some key fundamental principles come to play.
It is a fundamental principle of measurement technology that
relative measurements can be more precisely made than can

absolute ones. For example, the time interval between two

epochs can be measured to parts in 1012 or better, while the

absolute time (of day) can be measured to parts in 103. The same
principle is involved in analysis of multispectral data. It is easier
to decide between two alternative possible materials than it is to
identify a material on an absolute basis.

f

This suggests that analysis algorithms that discriminate between
alternatives should be more powerful than those which identify a
material outright. The implication arising from this principle is
that, to gain full advantage of the data, one must construct an
exhaustive list of possible outcomes to the particularanalysis,
and that relative pattern classifiers should be more effective than
absolute ones.

In a practical sense the analysis process is in effect the merging

of prior knowledge with the data to be analyzed. This prior
knowledge may be of a subjective nature, such as the
information one possesses as a result of being an expert in the
particular sub-discipline of Earth science involved, or of having
specific detailed knowledge of the ground area from which the
data were gathered. It may also consist of quantitative data that
has previously been gathered about the particular scene or the
particular materials of interest. It is also fundamentally true that
the more of either of these kinds of information that can be

brought to bear upon the analysis task, the greater the
information that earl be derived from the data.

Further, especially regarding prior knowledge of a quantitative
nature, one must somehow reconcile the circumstances of data

collection of the prior information with those of the current data.
Perhaps the most obvious way of doing this is to calibrate both
data sets, however, this has proven to be a daunting task and is
itself subject to inaccuracies. As the complexity of data
increases, the importance of accurate calibration increases, but
so does the difficulty of achieving the increased accuracy that the
increased level of detail requires. Thus, if other methods for
reconciling prior and current data can be used, or if analysis
methods can be found which are less sensitive to noise including
the inaccuracies of calibration, they should be advantageous.

Finally, regarding analysis algorithm characteristics, the
circumstances of the remote sensing situation require that, if
possible, it is desirable that the analysis method not require
concomitant data collection from the ground. This is a desirable
characteristic, because it is necessary that an analyst be able to
analyze data sets from any part of the world. Note that there is
not a requirement for the analysis to be automatic in the sense of

no human participation in the analysis process. Indeed, as
pointed out above, the greater the prior knowledge, be it
quantitative or be it subjective resulting from human expertise,
the greater the possible performance of the analysis process.

Summarizing then,

• Materials to be identified should be effectively modeled,
and in a manner which associates classes of materials of

interest with families of spectral responses (rather than
individual spectra).

• A relative scheme is preferred over an absolute one.
• Some means of reconciling current data with prior data is

required.
• An algorithm that is quantitatively oriented but which

provides for the use of human expertise in an objective

and efficient manor is highly desirable.

But What About Hyperspectral Data

It has been indicated that the emergence of hyperspectral sensors
is really driven by a technological development. One question
often raised is, "Is there a demonstrated 'requirement' for
iayperspectral data?" Though it is frequently assumeu that
requirements should precede technological capabilities, it is
probably true that for most of the greatest scientific
advancements, it happens the other way around. Even so, is

there a demonstrated need for hyperspeetral data given it has
become possible7

No doubt the ice-breaker in this regard has been imaging
spectroscopy [5]. Simply stated, this is an attempt to do from

space what the chemical spectroscopist does in the laboratory,
i.e., identify materials by looking for narrow absorption lines in
the spectra that are diagnostic of specific molecules. It is an
important technique, not only because it works for certain

applications, but because the method can be quickly grasped and
clearly understood by those who have only peripheral
knowledge of remote sensing. Thus it has been successful in
launching a broader interest in this advancement of technology.

The question remains, however, as to what the ultimate potential
of the technology is and how to approach it. It is reasonable to
hypothesize that with the order of magnitude increase in both the
number of bands and in the signal-to-noise ratio, one should be
able to increase the number of materials, the level of detail of

materials, or the identification accuracy, or perhaps all three of
these. But how does one deal most effectively with 200
dimensional data?

The answer to this question is a matter for research for which

there is no single answer at this time. One approach to the
problem is illustrated in Figure 2.
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FTgure2. Aparadigm for using 200 dimensional data effectively.
Thisanalysis logic uses a case-specificpre-pmcessing
step that reduces the dimensiona/ity to a range that can
be dealt with effectively via conventional feature
selection.

The concept in this approach is to use a preprocessing step
utilizing class conditional information such that the
dimensionality is reduced without loss of relevant information.

To illustrate this technique we will briefly oudine the method and
results of analysis of an AVIRIS [6] data set. The problem is to
produce a geologic map of the Cuprite mining district in
southwestern Nevada. This area has been overflown several
times by AVIRIS, and has been previously mapped on several

occasions. The intent this time is to use methods applying the
above fundamentals to illustrate the ability to function effectively
in the face of noise. Therefore, a data set was chosen which was

collected early in the life of AVIRIS (1987) when the signal-to-
noise ratio was much lower than it is today. Further, the
classification, itself, was done without any adjustment for

• atmospheric effects or any other calibration or preprocessing of
the data.



Inthisanalysis,fourmineralswereof primary interest: Alunite,
Buddingtonite, Kaolinite, and Quartz. The analysis was done
using the MultiSpee I software system together with Matlab 2

implemented upon a Macintosh 3 computer, all of which are
publicly available. The technique used was to select a number of_
training samples for each of these minerals using interpretive
information as might be possess by an experienced geologist.
This was done with the aid of a Matlab-implemented log residue

transform capability to examine candidate training pixels that,
contain the characteristic absorption spectra for each of the four
minerals. The log-residue adjustment is used to adjust the shape
of the radiance spectra to be more similar to reflectance spectra,
as might be obtained in laboratory measurements, thus
increasing the manual interpretability of the spectral. Note that
this method of developing training for a pattern recognition
algorithm allows for the effective use of expert knowledge.of the
geologist/analyst, but in a manner that does not compromise the
quantitative nature of the data. Note also that the use of training
samples inherently reconciles the prior knowledge wlth the

observation conditions of the particular data set.

Recall that best performance should occur when a relative
classification scheme is used. This implies the need for an
exhaustive list of classes. Using the training set developed to
this point for the four desired classes, a preliminary
classification was carried out. Besides producing a Classification

Map, one of the capabilities of MultiSpec is to produce a
Likelihood Map, i.e., a display in which each pixel is exhibited
in a color shade corresponding to the degree of membership
which that pixel has to the (maximum likelihood) class to which
it has been assigned. All pixels having a low likelihood of class
membership suggest that they may be members of other classes
not yet defined. Using this display, again combined with the
analyst knowledge of geology, additional training the remaining
classes of tuff, alluvia and playa were defined.

While the absorption features used in selecting the training data
for the four minerals were useful in finding class training data,

they are not necessarily the best for discrimination between the
classes of the scene. To find the most effective features, the

decision boundary feature extraction method [7,8] was used.
Finally, the ECHO (Extraction and Classification of
Homogeneous Objects) classifier of MultiSpec was used to
obtain the final result. The ECHO classifier is a spectral/spatial

classifier which first partitions the scene into statistically similar
groups of adjacent pixels, called objects. The objects are then
classified by a maximum likelihood sample scheme. The final
result is shown in Figure 3 (original in color).
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Figure 3. ECHO dassi.,ffcationa.fCuprite area. (Origihal in color)

This result compares favorably on a subjective basis with other
mappings of the area done with more extensive procedures and
high signal-to-noise ratio data. Without detailed ground truth
from the area, a quantitative assessment of accuracy is difficult

,,,, to obtain direedy. Two indirect methods commonly use in the
field of pattern recognition are the re-substitution method
(known to be optimistically biased) and the leave one out method
(known to be pessimistically biased). By these methods, the

_:elassifieation accuracy is measured as 93% and 92%
respectively.

In summary, this example implements most or all the basic
.... : principles described earlier and for the trouble, it achieves results

comparable to other methods in the faeo of greater levels of noise
and without using several of the computationally intensive data

adjustment methods commonly seen as required. Given the high
accuracy of the result even without any preproeessing
adjustments to the data, this suggests that hyperspectral data may
have greater potential than is shown by this particular example.
The problem, itself, is not as challenging as might be desired for
a more thorough test, and one might hope that a problem with
more detailed classes might be undertaken with a reasonable
chance for success. This, together with further improvements in
the algorithms used, remain for the future.
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